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Abstract  
  
  Fusion of Radio Frequency Identification (RFID) with 
Computer Vision (CV) can significantly improve performance 
in applications of autonomous vision and navigation, activity 
analysis, site monitoring, and especially in outdoor 
environments.  RFID and CV provide both overlapping and 
unique information for deciding on object identity, location, 
and motion.  We use relaxation to control the integration of 
information from CV, RFID, and naïve physics.  Work site 
analysis must proceed even when information from one sensor 
or information source is unavailable at some time instances.  
Simulations show how fusion can greatly increase tracking 
performance while also reducing computational cost.  Test 
cases show how fusion can solve some difficult tracking 
problems outdoors. 
 Key Words:  Tracking, stereo, RFID, fusion, relaxation, site 
monitoring. 
 

1 Introduction 
 
 We are interested in application problems in site monitoring, 
security, and activity analysis.  Examples are tracking both 
baggage and people in airports; workers, materials, and 
machines in construction sites; or patients and care workers in 
medical care facilities.  There are many other important 
applications.  We believe we are the first to report 
experimental work on fusion of RFID and CV for object 
identification and tracking in an outdoor environment.  
 Figure 1 shows our outdoor test site: we are studying how 
well we can detect and track RFID tagged moving objects.  
The site is a courtyard roughly 40 Sq m with several stone 
posts, sidewalks, and several large trees that limit both 
movement and observation via sensors.  The surrounding 
building has many corners and windows.  We surveyed 
landmarks using a combination of tape measure, laser range 
finder, and then stereo vision once enough calibration features 
were available.  The same landmarks were available for 
calibration of a set of RFID readers as well.  
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1.1 Basic Functionality Required 
  
 The applications of interest require a system that provides 
some or all of the following basic functions. 
 

a. Detection of the presence of objects of interest (persons, 
machines, materials, vehicles…). 

b. Identification of the objects (by class or by a unique 
object instance). 

c. Object location in workspace coordinates or by 
designated areas. 

d. Object track, if the object is moving. 
e. Important object properties, such as shape, color, 

weight, speed, ownership, supplier, etc.  
f. A memory representation of space and time including 

location of objects, trajectories, and behaviors. 
g. Application specific processes that manage objects and 

control their behavior (such as collision avoidance or 
creation). 

 
 Fusion of CV and RFID may provide the base functionality.  
Higher level problem-specific analysis applied on top of 
functionality (a) to (e) can create a dynamic inventory of a 
workspace, infer what agents or objects are doing (function f), 
actively manage interactions, define and summarize events, 
etc. (function g). 
 
1.2 Some Advantages and Disadvantages of CV 
 
 Computer Vision has been very successful in controlled 
indoor environments, but challenged in uncontrolled outdoor 
environments.  The CV literature contains thousands of reports 
on object detection and recognition, tracking, and motion 
analysis.  Image sensors are passive, cheap, can be far-seeing, 
and can collect a good deal of information about a scene.  
Commodity cameras easily produce frame rates useable for 
most human motion analysis.  Detections and relationships in a 
2D image can often be mapped to the real 3D scene.  Using 
multiple camera stereo, objects can be located in 3D(or, special 
active sensors can yield range/depth images). 
  Object identification via CV -- function (b) above -- is often 
difficult and is usually based on sensed features (e).  Even 
accurate features may not precisely identify an object, e.g., 
who is that person or what year is that Chevy Cruz
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Figure 1:  Outdoor workspace:  about 40 Sq m with trees and structures and a surrounding building 
 
Identifying an object by features, if possible and reliable, can 
be computationally costly given the necessary signal 
processing and the variation of appearance over many possible 
3D poses.  So, while person identification using carefully 
imaged biometrics might yield identity accuracies of over 98 
percent, more general object recognition via color camera 
image is far less accurate.  Acquiring quality images under 
occlusion and variations in lighting also cause serious 
problems in CV applications.  Uncontrolled outdoor 
environments might be dark, dusty, have rain or snow, and 
have both static and dynamic objects occluding the sensor 
view.  Finally, CV may sometimes give too much information; 
for example, humans do not want to be imaged in private 
spaces, and may resent being watched in work places. 
 
1.3 Some Advantages and Disadvantages of RFID 
 
 RFID can easily and reliably provide a unique object 
identification by transmitting a digital signal to a reader.  With 
enough power, RFID can also transmit non visual features of 
an object, such as weight or ownership.  RFID can operate in 
smoke, and darkness, thus it is widely used in sales and 
inventory systems and is replacing bar coding when cost 
permits.  Object identification approaches 100 percent 
accuracy in commercial applications where objects are close to 
(presented to) a reader in a controlled environment.  Objects 
with RFID tags can actually transmit their own physical 
description to an automated system or a security person.  In 
robotics or material handling, the description might send a 
CAD model to a CV system to teach it how to recognize the 
object.  RFID technology offers a wide variation in terms of 
cost, size, sensing distance, memory and processing power, 

and security [6].  With higher RFID frequency, higher data rate 
can be achieved.  The higher data rate with appropriate anti-
collision algorithm can enable a single reader to read a large 
population of tags.  RFID can even be used to locate objects. 
In one method, a networked grid of short range RFID readers 
can be polled to find out which reader is sensing the nearby 
object.  Alternatively, multiple long range readers can locate 
an object with an active tag by triangulation or trilateration 
[22].  The Real Time Location System [3] that we have used 
for our RFID sensing is discussed in Section 3.  RFID codes 
cannot be sensed by humans and hence can yield less overt 
identity and might be tolerated in private human spaces. 
 RFID requires that an object be physically tagged, thus 
changing the object itself and requiring that the object be 
“cooperative”.  Although passive RFID tags can be tiny and do 
not require their own energy source, they are used for limited 
range and have limited memory.  Highly functional RFID tags 
require an energy source for communication, memory, and 
processing.  An RFID tag is a proxy for an actual object so it 
or its communication can be counterfeit, thus making an object 
appear to be what it is not.  Simple examples of this would be 
one driver stealing an EZ-PASS device from another driver, a 
shopper moving a tag from a cheap article to an expensive one, 
or two airline passengers swapping their RFID boarding 
passes.  Thus RFID tags in critical security applications need 
to use encryption and secure operating system principles. 
Fusion with CV can enhance security. 
 
1.4 Outline of the Paper 
 
Section 2 describes a few related prior applications and 
methods using fusion of RFID and CV.  Section 3 describes 
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the model of the problem we approach and Section 4 
highlights the relaxation scheme as its solution.  Section 5 
gives critical test scenarios illustrating the benefits of fusion to 
object tracking and further analysis.  Section 6 is our 
concluding discussion.  
 

2 Background 
 
 We have surveyed many different projects dealing with fused 
CV and RFID.  All of the projects using fusion were applied in 
indoor controlled environments.  Here we describe just a few 
significant projects that used RFID and CV and demonstrate 
the potential for many other applications. 
 
2.1 Monitoring People in a Controlled Indoor Environment 
 
 Fusion of RFID and CV has been used in a day-care 
environment by S. Nakagawa, et al. [13].  Parents can view 
their child’s activity via the Internet.  RFID tags are placed on 
play objects and on children so that readers in the play space 
can identify and locate them.  The system can then select 
appropriate cameras for good views of selected children and/or 
objects.  Software alarms can be implemented for interaction 
between special pairs of objects and summarization of an 
entire day’s activity of a child can be done.  The parents can 
know who or what their child interacted with in a given day 
and can locate video segments of these interactions.  There are 
other applications requiring similar functionality – elder care, 
studying how shoppers examine items for sale, or how visitors 
examine art in a museum. Teixeira, et al. [21] reported tracking 
patients in indoor elder care using cameras on the ceiling and 
cell phones.  Statistical methods were used to correlate the 
image features with the locations reported by the cell phones 
system. 
 
2.2 Robotics Applications 
 
 Passive stereo vision can locate detected objects in a 3D 
volume [19].  An RFID reader can be used to identify an object 
observed in some 2D image, thus aiding stereo; or, a network 
of RFID readers can provide coarse 3D location without 
cameras.  RFID technology also enables smart objects to 
communicate information about themselves not available to 
optical sensors; for example, object weight, container content, 
etc.  A tagged rigid object can even help provide an optical 
observer with a network downloaded CAD model of itself to 
be used for pose computation by the observer.  This was done 
by Hontani, et al [7], who also used visual tags on objects as a 
starting point in matching an observed image of the object to a 
projection of the 3D CAD model.  Chae, et al [2] using fusion 
of RFID and CV, proposed a global to fine localization 
algorithm for a mobile robot in an indoor environment.  The 
problem of dynamic obstacle recognition in mobile 
autonomous platforms is addressed in [10] by using fused 
information.  Limitations in mobile robots such as dead 
reckoning or wheel slippage are also addressable using fusion.  
Moreover, information can be written to an active tag perhaps 
recording object location and time, or perhaps what operation 

or measurement was done on the object. 
 
2.3 Tracking Elephants in the Dallas Zoo 
 
 The commercially available Real Time Location System 
(RTLS) [3] can both identify and locate an active tag in a work 
or play space indoors or outdoors.  Typically, five or more 
readers are distributed about the space, which can be as large 
as 600 Sq m.  An implementation at the Dallas Zoo provides 
displays to visitors that locate each elephant in a 2D map of 
their area [5].  Elephants wear an active tag on their ankle.  
The system can locate the tag (elephant) within 1 or 2 m 
accuracy and update the location every 2 sec.  This is not an 
application of fusion with CV; however, cameras could easily 
be added and used as in the aforementioned day care 
application.  It would be simple to place cameras about the 
elephant area and then add them to the area map so that they 
can be used to observe a particular elephant with a known 
location in the map.  We use RTLS in our outdoor research on 
fusion and this RFID data is illustrated in Section 4.  
Evaluations of the used RTLS in both indoor and outdoor 
environments are available on the internet [9].  On a similar 
note an airport security system has been proposed and 
analyzed by Zekavat, et al. [24].  It is primarily based on RFID 
for location and tracking of passengers and staff. 
 
2.4 E-Passports 
 
 Electronic passports have been designed that combine RFID 
tags with conventional printed information and a photograph 
[8].  The RFID tag can privately and quickly transfer 
information about the person (object) to a machine, thus 
streamlining information transfer and saving personnel time.  
Encrypting techniques can make forgery much more difficult.  
There must be a digital photo or fingerprint on the tag, which 
can be compared to the live person.  Once a person has entered 
a secure area, the digital photo or fingerprint can be compared 
to live biometrics taken in the workspace, such as in doorways 
or stations, to verify the location or activity of the person.  
Early on, some reengineering of the E-passport had to be done 
to shield the RFID tag so that it could not be read by hackers in 
unofficial places when the passport was just slightly open. 
 
2.5 Sensor and Cell Phone Networks 
 
 Wireless sensor networks are networks of compact, cost 
effective nodes that sense and communicate environmental 
conditions such as light and temperature etc.  Many 
applications use sensory tags that are RFID tags, which 
incorporate sensory functionality in addition to identification 
and possibly localization.  Sensor networks alone can be used 
to provide location information using relative location between 
sensor nodes [11].  In applications where location monitoring 
is required, sensor nodes are oriented with respect to a global 
coordinate system so as to provide geographically meaningful 
data.  
 Functionally cell phones are similar to active RFID tags and 
cellular towers are similar to RFID readers operating over 
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large distances.  Commodity pricing brings impressive power 
to cell phones at moderate cost.  The latest smart phones have 
many useful sensors onboard, such as cameras, accelerometers, 
gyros, compass, GPS receivers, proximity and light sensors.  
Also they have large memories and exchange arbitrary data 
across networks.  These sensors can be used in a local setting 
to compute position and movement information, for example a 
high-accuracy acoustic based ranging system using mobiles 
[15].  It is reported in [1] that NTTDoCoMo has manufactured 
cell phones with built in RFID modules.  The present and 
future needs of these systems being fused together will 
generate a single efficient device useful for the applications 
cited in this paper. 
 
2.6 Using Naïve Physics in Tracking 
 
 Many studies have focused on processing video to compute 
features used to extract and track moving objects.  For 
instance, authors in [25] have used a vision based image 
registration algorithm to compensate for camera motion and 
then consecutive frames are transformed to the same 
coordinate system to solve the feature point correspondence 
problem. Zhou, et al. [26] have provided a blob tracking and 
classifying method in an outdoor environment by establishing 
correspondence between the object in view and the matched 
templates.  A method of background subtraction and shadow 
detection in videos is provided in [4].  Meier, et al. [12] have 
reported an algorithm that can automatically extract moving 
objects from an image sequence.  A survey of passive 
monocular methods is given by Veenman, et al. [23].  
Consistency of color, texture, shape, and motion can be used to 
track an object region across multiple video frames.  Variable 
lighting, variable 2D projections of a 3D object, and occlusion 
of one object by another present difficulties.  Applications that 
need to recognize what the objects are face additional 
uncertainty and complexity.  For example, an autonomous 
vehicle needs to identify obstacles in its path using their image 
extent and their motion or apparent motion [14].  Passive 
tracking using only cameras remains an important area of 
continued research. 
 

3 Problem Representation 
 

 Our problem is to compute in real time the trajectories of N 
objects moving within a known 3D workspace.  Diverse sensor 
observations are combined into object locations, and possible 
identities, at discrete time steps, which must be aggregated into 
N object trajectories.  Without loss of generality, we may 
ground our discussion using the Site Safety System (SSS), 
where we want to track workers, materials, and machines in a 
work site.  We abstract the information structures in order to 
support a system with diverse information sources and 
constraints and processes that may not have knowledge of each 
other. 
 
3.1 Tokens Code Observations from Images and RFID 
 
 Sensor observations, and combinations of them, produce 

tokens τ=<x, y, z, t, v, L>, each coding that an object with 
identity, or name, L and feature vector v is at location (x,y,z) at 
time t.  Some tokens will have incomplete information: for 
example, Identity L may be absent from camera observations 
and object features may be absent from RFID observations.  
3D coordinates may be absent for an observation from a single 
camera image or single RFID reader.  Two or more of these 
tokens can be combined in the processing to get 3D 
coordinates.  
 
3.2 Object Tracks {<x, y, z, t, v, L>} 
 
 The site safety system SSS must detect, identify, and locate 
objects in a few video frames k.  SSS may know L = f(<x, y, z, 
v, t>) from sensor subsystems that use RFID or visual features.  
SSS can also use “tracking” to determine the label L = f ({<x, 
y, z, v, t-k>} ) based on prior tokens or perhaps even forward 
tokens {<x, y, z, v, t+k>}.  If object identity L is known, other 
object features w = f(L) may be available from an RFID tag, 
such as object mass or CAD model.  Finally, we note that if 
sensors supply object speed or acceleration, as cell phones 
may, we consider these as components of v along with color, 
texture, elongation, etc. of its image. 
 An object track is k or more tokens in time sequence with 
consistent object identity and features that also satisfy 
constraints for motion in space.  Tracking is an important 
concern of this paper, and is a low level of motion 
understanding that uses naïve physics to aggregate 
observations over time.  Heuristics from naïve physics enable 
aggregation of individual tokens into a sequence or track, one 
for each moving object.  As objects move through the 
workspace, they may be occluded at any instant from either 
cameras or RFID readers so there may not be multiple tokens 
to fuse.  Smoothness constraints, or motion applied over 
multiple time steps can be used to interpolate. 
 As we will see, it is not possible to assign unique object 
identities to every token at every time instance.  Consider, for 
example, the popular shell game where a bean is placed under 
one of three shells that look alike [20].  When the shells are 
shuffled quickly in space, most people cannot track the shell 
containing the bean.  If the shells are of distinct colors, then 
the problem of picking the final shell is easy.  If the shells are 
identical in appearance, but the bean is an RFID tag, RFID 
readers are unlikely to be able to distinguish the tagged shell in 
space when the shells are close to each other.  Consider three 
workers with hard hats each with a tag and close together; if 
the hats are the same color, RTLS cannot distinguish them; if 
we know which colors contain which tags and the hats are of 
different colors, the system can solve the matching problem 
and locate each hat within the CV distance error.  In order to 
model ambiguity, we will have to allow multiple labels L in 
the tokens of an object track:  these labels record the ambiguity 
of idenity at this point in time and space. 
 
3.3 Obtaining 3D Object Location (x, y, z) 
 
 All sensors are calibrated to the same 3D workspace.  One 
fundamental sensing concept is that a sensor observes an 
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object along a ray in 3D space.  The object can be located by 
intersecting two (or more) rays (or error cones) as done by 
using the standard stereo solution [19, Ch 13].  Possibly, two 
RFID readers, or one RFID reader and one camera can be 
combined this way as well.  The underlying geometry is angle-
side-angle, where the side is the known 3D baseline between 
the two sensors.  A second fundamental sensing concept is 
where the sensor observes an object at some distance d.  If the 
object transmission is observed by four such sensors, it can be 
located by trilateration, intersection of four spheres with radii 
equal to the sensed distances.  An object can also be located by 
intersection of the ray/cone determined by an image 
observation and the spherical shell determined by distance d 
sensed by a single RFID reader.  The commercial RTLS 
system encapsulates multiple RFID readers and yields a token 
with unique object identity and (x, y) coordinates on the 
ground plane of the workspace. 
 
3.4 Fusion 
 
 We define fusion as the combination of different sensor 
tokens to obtain a token containing information from the 
different sensors or with new information computed from the 
tokens from the different sensors.  Most importantly, RFID and 
CV tokens will be fused to combine object identity with object 
features and to provide or to refine object location.  
 
3.5 Naïve Physics 
 
 Naïve, or common sense, physics provides many constraints 
about the world.  These constraints have diverse forms and can 
be used in the filtering processes of relaxation.  An object n 
must be at one and only one place at time t and location 
<x,y,z> can accommodate at most one object at time t.  Object 
n is likely to have consistent form and visual features and 
observations of object n must be consistent with its identity.  
The motion of object n is likely to have smooth direction and 
velocity.  Such constraints extend those used by Sethi and Jain 
[18] and Veenman, et al. [23].  Unfortunately, none are hard 
constraints!  For instance, it may actually be that two objects 
have the same coordinates – when a driver enters a vehicle, for 
example. 
 
3.6 Sensor Error and Synchronization Problems 
 
 In an outdoor environment we evaluated positional accuracy 
and reliability for the RFID based Real Time Location System 
(RTLS) and the stereo computation obtained using commodity 
cameras [17].  The calibration of stereo system and RTLS 
system were done on the same test site.  An adequate number 
of distant points (in the background) and nearby points (in the 
foreground) were acquired to serve as calibration markers for 
stereo computation.  The stereo infrastructure provided RMS 
positional accuracy of 19.3 cm for x,y and z directions.  The 
reported location accuracy for the RTLS system for static tags 
is ~1.5 m and for dynamic tags is 2 m ~ 2.6 m.  RMS error 
does not include the occasional outliers that are possible from 
incorrect stereo correspondence or multiple path effects in 

RFID. 
 One significant practical problem for fusion is the different 
sampling rates of the sensors or the extended time needed to 
smooth data or to make decisions about the motion of an 
object.  Due to time division multiplexing, our RFID system 
provides data on all objects every 2 sec, while our stereo 
implementation could produce 10 updates per second for a few 
objects.  In our experiments we typically force a common 
sampling time for RFID and CV and look back two time 
samples to estimate motion.  The uncertainty of location for 
RFID is much larger than for CV for static objects and even 
larger for moving objects due to under-sampling.  Interpolation 
using CV locations can be used with sparse RFID samples 
with reliable identity.  Finally, it is possible that an object is 
invisible at some time steps to either or both CV and RFID due 
to occlusion. 
 

4 Relaxation Labeling Scheme 
 
 We use discrete relaxation to create the tracks of the N 
objects and to update the time tokens comprising each track.  
Using relaxation, different sensors and sources of information 
can be turned on or off for experimentation or for practical 
reasons at a site.  Fusion processes operate on a blackboard 
containing the set of tokens.  When an observation is made, its 
initial label set is the set of all possible N known objects.  
Filtering processes are then applied to eliminate labels 
inconsistent with constraints.  Sensing continues over the T 
time steps and naïve physics processes aggregate object 
consistent tracks. 
 For clarity, suppose that N objects are detected at time t=1 
and that we arbitrarily label these objects 1,…,N.  At time t=2, 
we have another N observation and we want to label each of 
those with the labels from time t=1.  A label possible for a 
token at time t=2 will be consistent in color, motion, and RFID 
identity with the tokens at time t=1.  Initially, a new 
observation may detect any of the known objects, so all labels 
L are possible.  A totally new object entering the site could be 
given a new unknown label.  Most of these labels are filtered 
out quickly by failing constraints.  For example, suppose 5 
orange hard hats are detected at t=1 and these have initial 
labels 3,4,6,8,9.  For any token for time t=2 that is not orange, 
labels 3,4,6,8,9 will be deleted from its possible label set.  
Filtering can be done by space as well as by color.  If any 
token at time t=2 is unreasonably far from a token m at time 
t=1, then label m should be deleted from its label set. 
 
4.1 Sensor Processes 
 
 A CV sensor process takes a video frame, segments it, and 
creates a token for tracking.  Image features and two points on 
the imaging ray are stored in the feature vector v.  Object L is 
initially unknown.  An RFID reading produces a similar token, 
except that an object label L is known in almost all cases.  
 
4.2 Combination Processes 
 
 Fusion processes take the sensor tokens and possibly merge 



 IJCA, Vol. 21, No. 2, June 2014 100

information using ray intersection, ray-surface intersection, 
etc., whichever applies, and outputs a token with refined 3D 
location or label information.  Filtering processes eliminate 
unlikely token labels by comparing tokens and by looking at 
feature vectors over time.  (Our current software implementa-
tion of relaxation inputs combined tokens that have been pre-
computed from stereo correspondence.  Similarly, RFID 
tokens have 3D information from the encapsulated  
RTLS system.) 

4.3 Tracking Process 
 
 Naïve physics constraints are used to filter out highly 
unlikely labels for objects at time t based on the recent history 
of objects continuing from the k previous time steps.  Our 
current results have used the current and 2 previous time steps. 
 
4.4 Relaxation Labeling Algorithm

 
 
 
Output: Object Labels Lk and 3D location XYZRefined ∈ R3 
Input:  Object Labels Lk-2 and Lk-1 with color, RFID and XYZRFID and XYZStereo ∈ R3 
 
FOR  t = k :Kframes 

• Obtain color information if any for XYZStereo observations from 2D histogram matching 
• Sort colors into groups /* How many colored hats and balls and which colors*/ 

 
Detect 
• n number of XYZStereo observations detected /* Motion detection and color detection*/ 
• m number of XYZRFID observations detected /* Active RFID*/ 
• Generate empty label matrices for p observations /* p = max(n,m)*/ 
• Assign p labels to all p observations and proceed to next pass 

 
Identify /* Binary relationship criteria*/ 
• Identify XYZStereo observations based on color information 
• Identify XYZRFID observations based on identity 
• Correlate identity information 

 
IF Only one color group /*All XYZStereo  observations have same color*/ 
 No label elimination and proceed to next pass 
ELSEIF  Different color groups /*Some XYZStereo observations have different color*/ 

Eliminate labels from p label matrices based on respective color groups and proceed to next pass 
END IF 

 
Locate /* Binary relationship criteria*/ 
• Set stereo and RFID location threshold values /*Thresholds are defined based on sensor location accuracy and  

     object speed*/ 
• Locate XYZStereo observations 
• Locate XYZRFID observations with identity and location 
• Correlate location information 

  
Smooth 
• Calculate direction of flow/velocity for every XYZStereo observation at t = k relative to k-2 and k-1  

 /*  z dimension gives valuable information here */ 
• Correlate with RFID label/s identity and location information from XYZRFID 

  
IF  No difference in flow detected 
  Labels kept 
ELSEIF  Difference in flow detected /* Only compatible labels remaining.*/ 
  Eliminate unlikely labels 
END IF 

 
Compatible label/s obtained /*All possible labels for specific object*/ 
• Compatible label/s provided to optimization process to obtain XYZRefined 

END FOR 
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5 Test Cases and Analysis 
 
 We illustrate in this section how CV and RFID supplement 
each other in critical test cases.  For clarity we first assume that 
for case I and II, both CV and RFID feeds are continuously 
available and the objects are not occluded by each other or the 
background and are moving with approximately the same 
velocities.  Actual observations from our outdoor test site are 
used. 

5.1 Test Cases to Explain Fusion 
 
 For case I, consider two objects represented as ▲and ■ with 
3D data at each instance over 9 time frames.  For better 
visualization the tracks are displayed in the xy-plane in Figure 
2a.  The objects are converging from north to south towards 
each other, and intersect at time frame 5 and thereafter follow 
their direction of motion without any change.  Even if the 
objects were moving in a straight line, the points would appear  
 
 

  
(a) (b) 

  
(c) (d) 

 
 

(e) 
 

(f) 
 

Figure 2: CV and RFID supplementing each other:  (a) Same colored object tracks with label assignments in (b).  (c) Different 
colored object tracks with label assignments in (d).  (e) Considering visual occlusion and intermittent RFID, different 
colored object tracks with label assignment in (f) 
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to be scattered along the true path due to propagating location 
errors and distortions in a 3D space.  CV and RFID location 
accuracies are shown with circles.  The inner circle around 
every point shows the localization error of CV and the outer 
circle represents that of RFID.  Figures 2a and 2b shows case I 
where both the objects are of the same color.  Figure 2a shows 
the object tracks and Figure 2b represents label assignments.  
The CV system can correctly assign labels to ▲ as label 1 and 
■ as label 2 up until time frame t = 4. Thereafter, there is a 
probability of no identity assignment, which based on 
relaxation labeling means no wrong label elimination and is 
represented here using both labels for both points.  On the 
other hand, RFID provides correct label assignments other than 
at t = 5 due to fully overlapping localization error of point ▲ 
and ■.  In this case RFID helps CV to generate correct object 
tracks.  However, no label elimination in the intersection area 
is possible.  The only contribution of CV is that it refines 
location. 
 Figures 2c and 2d shows case II where objects are of 
different color.  Due to no occlusion CV will be able to 
provide correct label assignments.  However, RFID will have 
no label assignments at t = 5.  Fusing both feeds, CV 
supplements RFID here and the label assignment at t = 5 is 
obtained.  For both cases CV support can also be clearly 
appreciated when RFID location error is maximum (i.e, on 
outer circle boundary) for two points having overlapping 
localization error in consecutive frames. 
 Figures 2e and 2f showcase III where some of the objects are 
occluded by the background and the RFID feed is intermittent.  
This is represented as missing vision and/or RFID location 
accuracy circles.  The dash symbol shows non-availability of 
observation for that time instance.  Comparing Figure 2e and 
2f it is obvious that CV and RFID supplement each other at 
missing spots and fusion of these generates correct label 
assignments. 
 To realize how the dynamics of relaxation labeling can fuse 
information we describe here some related critical test cases. 
 Figure 3 shows case IV with simpler dynamics where two 
objects having the same color features moving from west to 
east first converge, move side by side for some time, and then 
diverge.  The number of possible compatible labels after fusion 
is shown below each block of time frames. 

 
Figure 3: Correct object tracks with possible compatible labels 

at each block of time frames 

 Consider case V that is reconfigured from the scenario given 
in [17].  Two persons ▲,♦ (wearing distinctive clothing) 
carrying two balls ●,■ move towards each other and meet at 
the center of the test area.  They then exchange the balls and 
backtrack to their starting positions.  Both persons and both 
balls  are tagged.  To test algorithm robustness and under 
increased complexity we consider that the color of the balls 
and the persons head gear is the same.  For better 
representation the observed 3D points shown in Figures 4a and 
4b are the simulated version of the scenario over consecutive 
time frames. 
 Figure 4a represents correct trajectories of the persons and 
the balls.  If we assume that there is no occlusion and only the 
stereo feed is continuously available then Figure 4b shows 
incorrect trajectories of the persons calculated by the stereo 
feed alone.  
 It is assumed that we have prior information about the feature 
set and 3D location of the object labels at time frame t = 1 and 
2.  For subsequent time frames we correlate CV and RFID 
information and apply constraints in detect, identify, locate and 
smooth passes.  Constraint based label elimination by these 
filtering passes update the label matrix for every observed 
point at every time instance.  Once all impossible labels are 
removed and no further elimination is possible then the 
remaining labels are considered as compatible label/s.  The 
labels are then passed on to the post-processing optimization 
process for updating fused token feature vector v and the 
refined location XYZ and, where required, determining a 
possible unique label in the compatible labels set.  The labels 
acquired are then assigned to the observed points respectively. 
Figure 4c demonstrates a typical label matrix on the left that 
shows all four passes with the remaining compatible labels at 
the end.  The RFID location information on the right is shown 
with each label matrix to provide evidence of objects presence. 
 For the observations in Figure 4a a step-by-step explanation 
on how the label matrices are updated is provided in Figure 5.  
For time frame t = 3 and 4 in each label matrix the objects are 
detected in the detect pass based on motion, color and identity 
and subsequently all the possible labels are assigned to all the 
observed object points.  In the identify pass the system 
identifies objects based on color groups and identity from 
RFID.  Since the color information for the observed points is 
the same, it is considered that no label is eliminated at this pass 
via  color histogram based similarity.  In the locate pass the 
labels are eliminated based on near neighbors where 
thresholding is done using sensor location accuracy and object 
speed.  This helps identify ▲,● and ♦,■ as consistent label 
pairs.  The two inconsistent labels are then eliminated from the 
respective label matrices.  The smooth pass correlates labels 
with RFID and deletes one further label with unlikely motion 
according to local (3 point or 2 point) smoothness and object 
height constraints.  This would leave more global tracking to 
post processing after all the relaxation is completed.  Note that 
at t = 5 the process of label elimination is complex due to the 
overlapping location errors of stereo and RFID making label 
elimination impossible in the detect, identify and locate passes.  
During the smooth pass, RFID provides no label elimination  
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                                             (a)                                                                                                (b) 

 
(c) 

 
Figure 4: (a) Correct trajectories of persons and balls.  (b) Correct balls and incorrect persons trajectories.  (c) Left matrix - 

General pattern of four relaxation constraint passes and final compatible labels.  Right matrix - RFID location 
information 
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Figure 5:  Label matrix updating steps for same colored objects at each time frame for Figure 4a tracks 
 
information showing all four labels ▲,♦,●,■ as valid, however, 
the system identifies ●,■ and ▲,♦ as possible label set pairs 
based on object height and velocity constraint and 
subsequently outputs two compatible labels. 
 The compatible labels are then fed to the post optimization 
process to identify the optimal label for each observation.  
Note that the system keeps one extra label as part of the 
possible compatible label set.  This explains a tradeoff between 
increased post processing computation for keeping a wrong 
label and the cost of eliminating a correct label.  Since the 
objects have the same color and are assumed to be moving 
with the same velocity at t = 6 the color and near neighbor 
constraints will not provide information for label elimination.  
In the smooth pass based on height and direction of flow 
relative to the previous velocity vector direction, CV identifies 

▲,●, and ♦,■ as compatible label sets for respective 
observations.  These two label pairs for each observation 
represent correct trajectories of the balls, but incorrect 
trajectories of the persons as shown in Figure 4.  However, 
RFID provides ♦,● and ▲,■ as possible label pairs.  
Correlating this information helps obtain one correct 
compatible label for each observation. 
 
5.2 Object Color Variations 
 
 We collected various samples and analyzed HSV color space 
consistency for the blue and yellow balls in different weather 
(winter and summer) and illumination (sun and shade) 
conditions as shown in Figure 6. 
 The results shown in Figure 7 show the color consistency for  
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Figure 7: Analyzing blue (O) and yellow (+) ball color consistency in HSV color space under different weather and illumination 
conditions 

 
blue and yellow balls for reliable color clustering.  Yellow ball 
HSV value is represented by + and the blue ball HSV value is 
represented by O.  The color clusters are clearly separated 
along the hue axis, which proves usefulness of CV to help 
distinguish objects based on color in an outdoor environment. 

 The irregular outdoor illumination variations and abrupt 
changes of brightness is evident in Figure 6.  If color is to be 
used by CV to help tag and distinguish objects, then the 
objects must be for the most part distinguishable in the video 
images.  In many cases workers will be wearing hard hats or 

Hue 
Saturation 

Value 

Hue 

Saturation

Value

Figure 6:  Different weather and illumination conditions
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vests of special coloring.  The SSS should be able to take 
advantage of these distinctive colors by exploiting color 
consistency for reliable color clustering. 
 The experiments reported in this paper did not use automatic 
color similarity computations to distinguish the class of object 
color:  instead, a symbolic color was assigned to the token. 
 
5.3 Simulations of Object Tracking 
 
 Prior to collecting real outdoor data, we performed many 
simulations in order to assess how effective labels could be in 
tracking under smoothness constraints – using observations of 
location but not color.  We created many ground truth object 
paths using real stereo observations made in our calibration 
track volume.  A brightly colored ball was waved within a 
69x81x61 cm track volume and the stereo system computed 
the path of the ball in 3D.  This was repeated ten times so that 
we had ten paths within the same workspace [16].  
 Resulting ground truth paths are shown in Figure 8.  We 
could then take subsets of these paths for simulations.  N 
observations over the time steps 1...T were selected and 
presented to our tracking algorithm to see what tracks would 
be aggregated using the naïve physics constraints.  Smoothness 
of trajectories requires a burst of time frames to reliably 
compute track smoothness, curvature, and acceleration.  
 

 
 
Figure 8: Ground truth trajectories generated using real stereo 

rig in 69x81x61cm track volume 

 If we consider n objects and a burst of m time frames, then 
the number of possible paths will be (n) m.  Assume that T is 
divisible by m. If there is no identity information available then 
the number of combinations for T time frames will be 
(T/m)x(n)m.  Depending upon the probability P for an 
observation identity being available for the burst, the 
combination volume is reduced accordingly.  It is considered 
that the identity when present is available for the whole burst.  
For example with n = 3, m = 4 and T = 60 the total combi-
nation volume will be 1,215 possibilities.  As shown in Figure 
9, with P = 0.267 the combinations volume is reduced upto 
435. 
 Simulations were conducted using N=5, 6 and 10 object 
tracks and T=60 time steps.  Using probability P, the ground 
truth identity was provided in the token.  Figure 10 shows 
results for reduction in combination volume with increase in 
probability P of object identity in the token.  Computation time 
is also shown at marked places to realize the reduction in 
volume.  With respect to our outdoor experiments, the 
probability P represents the time percentage for which the 
RFID feed for a tag was available.  The algorithm was run with 
frame burst length m=4. Identity of the bursts was assumed to 
be randomly available.  Figure 10 shows that while tracking 10 
objects the combination volume can be decreased up to 99.9 
percent with the partial identity feed thereby reducing 
computation time. 
 The effect of having some identity in the tokens increases as 
the number of object tracks N increases.  This data shows the 
difficulty faced by tracking algorithms that only use motion of 
image points to aggregate object tracks.  Without any object 
identity, quantifying motion over several time steps leads to 
too many possible tracks.  Although color, shape and texture 
features can be used by a passive CV system, the reliability of 
unique labels from RFID can yield correct tracks with far less 
computation.  These simulations motivated us to implement an 
actual Site Safety System using fusion of CV and RFID. 
 

6 Concluding Discussions 
 
 We have argued that the fusion of CV and RFID can produce 
more accurate object tracking and do so using more efficient 
computation.  The basic reason is that RFID can provide 
highly reliable unique object identification, although with 
coarse object location, while CV can provide more accurate 
object location along with confirming visual features.  We 

 
 

 
 

Figure 9:  Reduction in combinations with probability of random identity information availability 
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Figure 10: Possible combination volume with n objects and 

probability p of object identity in bursts of 4 
tokens 

 
have performed fusion experiments with tagged moving 
objects in a complex outdoor environment and the results 
support our predictions.  For RFID we have used a 
commercially available Real Time Location System [3] and we 
developed our own stereo system with a laptop, MATLAB, 
and two commodity color cameras.  Our total hardware cost 
was only about US$5500, for both the RTLS and only one 
stereo pair of cameras.  High level performance would require 
more cameras and more RFID readers in the workspace than 
we have used.  One significant problem in fusing the RFID and 
CV feeds is the difference in sensing frequency.  Commodity 
cameras are designed to represent human motion well and 
produce upwards of 10 video images per second, whereas our 
RTLS system produced tokens for all tags at 2 sec intervals.  
Engineering faster RFID updates will likely reduce the number 
of objects that can be sensed; however, this should be a 
favorable tradeoff in a construction site.  It may also be good 
design to have a hierarchy of RFID sensing with a slow system 
for asset/material inventory and a fast system for critical 
objects such as workers and moving machinery. 
  We established that the RMS location accuracy of our stereo 
system is 19.3 cm in x, y, and z for trajectories upto 24.4 m 
from the cameras in a workspace that is 40x40 m.  The location 
accuracy for RFID was about 1.5m in x and y ground 
coordinates for static objects, but about 2 m to ~ 2.6 m for 
moving objects, which we attribute to the location update 
frequency.  These results are consistent with previously 
published tests [9].  A commercial system should cover the 
workspace with a network of cameras.  We have demonstrated 
cases where fusion disambiguates object tracks and we have 
also given cases where disambiguation is impossible, as in the 
well known shell game.  We demonstrated how uncooperative 
objects can cheat the system.  However, in general fusion of 
RFID and CV is better than using only one mode alone and, 
where costs are justified, will produce systems that are better 
than those using only one modality.  Moreover, an automatic 
system detects the ambiguities and can cue the attention of 
higher level processes or longer lived processes, including the 

attention of human security personnel.  
 Simulations of tracking over many ground truth paths 
demonstrates how knowledge of unique object identity for 
some time instances can significantly improve correct tracking 
as well as reduce computation time in producing the tracks.  
Thus, many more objects can be tracked in practice if fused 
sensing is available compared to tracking by CV alone.  A fast 
tracking implementation would be active – it could plan more 
efficient work, warn of possible collisions, or detect illegal 
operations.  Finally, it is clear that the global workspace view 
we have used is too imprecise for detailed object interactions, 
such as cooperation compared to collision, or handing off 
carried objects.  Object born touch or looming sensors would 
be needed for some applications.  Our current work shows that 
pursuit of these extensions should be fruitful. 
 Discrete relaxation was chosen to control tracking so that we 
could easily experiment by switching on or off sources of 
information and develop our software in a modular way.  
Moreover, the label elimination approach easily represents the 
ambiguity occurring in real-life applications.  The key to 
reducing the computational requirements is to eliminate many 
labels at each filtering step while keeping those labels 
compatible with observation.  If there are N objects and N 
labels, the computational complexity of tracking is potentially 
of the order N 2 across just two time steps.  We need to 
continue to develop our system to perform the lower level 
token combination and to test it fully using a set of objects 
with some typical behavior.  We will also make the revisions 
that allow objects to appear and disappear from the surveyed 
workspace.  Also much of what has been discussed assumed 
objects were single independently tracked points.  Clearly, 
some objects would be a rigid aggregate of points.  For 
example, a truck might have a single RFID tag and perhaps 
four or eight visual markers that would reduce combinatorics 
and enable rigid motion analysis.  Such planar rigid structures 
and symmetries are also helpful to track moving objects with 
wide variations in position and orientation. 
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